This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

Source of Drinking Water
The water for the Kickapoo Traditional Tribe of Texas Reservation is supplied by the City of Eagle Pass Water Works (CEPWW, PWD ID TX1620001) drinking water plant. This water is surface water that comes originally from the Rio Grande River.

Source Water Assessment (SWA)
The 1996 amendments to the Safe Drinking Water Act authorize a Source Water Assessment Program to determine the susceptibility of a public drinking water supply to contamination. Sources of contaminants regulated by the Safe Drinking Water Act are required to be inventoried during the assessment process. YCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, please contact our water department.

Why are there Contaminants in my water?
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater dischargers, oil and gas production, mining, or burning.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or can be the result of oil and gas production and mining activities.

Some contaminants may not be detected by your water system's treatment process or certain types of analyses, even if they are present in your water. For example, some contaminants are extremely difficult to measure. These contaminants may include: some inorganic and organic chemicals, radionuclides, volatile organic compounds, pesticides, and others.

Important Health Information
Some people may be more vulnerable to contaminants in drinking water than the general population.

Immunocompromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, and persons with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other parasites are available on the following website: http://water.epa.gov/poet/dw/health.cfm.

For more Information Contact:
ROSA VARGAS
Environmental Assistant
Kickapoo Environmental Protection Agency
2212 Rosita Valley Rd.
Eagle Pass, TX 78852
Phone: 830-872-0421
Cell: 830-469-9422
E-mail: Rosa.Vargas@kttribe.org

Additional Information for Copper
Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over relatively short time periods could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage.

For more Information Contact:
ROSA VARGAS
Environmental Assistant
Kickapoo Environmental Protection Agency
2212 Rosita Valley Rd.
Eagle Pass, TX 78852
Phone: 830-872-0421
Cell: 830-469-9422
E-mail: Rosa.Vargas@kttribe.org

Additional Information for Lead
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Infants and children who drink water containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://water.epa.gov/ladw/lead.

For more Information Contact:
ROSA VARGAS
Environmental Assistant
Kickapoo Environmental Protection Agency
2212 Rosita Valley Rd.
Eagle Pass, TX 78852
Phone: 830-872-0421
Cell: 830-469-9422
E-mail: Rosa.Vargas@kttribe.org
Lead and Copper

<table>
<thead>
<tr>
<th>Contaminants</th>
<th>ALG</th>
<th>AL</th>
<th>90th Percentile</th>
<th>Sample Date</th>
<th># Samples Exceeding AL</th>
<th>Exceeds AL</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td><1.3</td>
<td>1.3</td>
<td>0.032</td>
<td>2020</td>
<td>0</td>
<td>No</td>
<td>Erosion of Natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>15</td>
<td>1.2</td>
<td>2020</td>
<td>0</td>
<td>No</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Disinfectants and Disinfection Byproducts

(There is convincing evidence that addition of a disinfectant is necessary for control of microbial growth)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCLG or MRDL</th>
<th>MCL, TT, or MRDL</th>
<th>Highest Detected</th>
<th>Range</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (mg/L)</td>
<td>≤4.0</td>
<td>4.0</td>
<td>2.19</td>
<td>0.06-2.19</td>
<td>2022</td>
<td>No</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>No Goal for Total</td>
<td>60</td>
<td>14 (AVG)</td>
<td>8.34-20.2</td>
<td>2022 (4 Qtrs.)</td>
<td>No</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>No Goal for Total</td>
<td>80</td>
<td>48.9 (AVG)</td>
<td>34.7-62.2</td>
<td>2022 (4 Qtrs.)</td>
<td>No</td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit Descriptions</th>
<th>Percentile</th>
<th>Sample Date</th>
<th>Exceeds AL</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha emitters (pCi/L)</td>
<td>0</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>2017</td>
</tr>
<tr>
<td>Beta/ photon emitters (pCi/L)</td>
<td>0</td>
<td>50</td>
<td>4.3</td>
<td>4.3</td>
<td>2017</td>
</tr>
<tr>
<td>Uranium (µg/L)</td>
<td>0</td>
<td>30</td>
<td>3.1</td>
<td>3.1</td>
<td>2017</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit Descriptions</th>
<th>Percentile</th>
<th>Sample Date</th>
<th>Exceeds AL</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (mg/L)</td>
<td><2</td>
<td>2</td>
<td>0.097</td>
<td>0.097</td>
<td>2022</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td><4</td>
<td>4</td>
<td>0.7</td>
<td>0.74</td>
<td>2022</td>
</tr>
<tr>
<td>Nitrate/Nitrite (mg/L)</td>
<td><10</td>
<td>10</td>
<td>0.24</td>
<td>0.24</td>
<td>2022</td>
</tr>
<tr>
<td>Selenium</td>
<td>2022 50</td>
<td>50</td>
<td>4.3</td>
<td>4.3</td>
<td>2022</td>
</tr>
</tbody>
</table>

Note:
- **MRDLG (Maximum Contaminant Level Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MRDLGs allow for a margin of safety.
- **MCL (Maximum Contaminant Level):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best treatment or other requirements which a water system must follow.
- **AL (Action Level):** The concentration of a contaminant which, if exceeded, triggers other requirements or other actions which a water system must follow.
- **ALG (Action Level Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
- **MRDL (Maximum Residual Disinfectant Level):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- **MRDLG (Maximum Residual Disinfectant Level Goal):** The level of a disinfectant below which there is no known or expected risk to health. MRDLGs allow for a margin of safety.
- **TTHM (Total Trihalomethanes):** A required process intended to reduce the level of a contaminant in drinking water.